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We present a Monte Carlo algorithm that facilitates efficient parallel tempering simulations of the density of
states g�E�. We show that the algorithm eliminates the supercritical slowing down in the case of the Q=20 and
Q=256 Potts models in two dimensions, typical examples for systems with extreme first-order phase transi-
tions. As recently predicted, and shown here, the microcanonical heat capacity along the calorimetric curve has
negative values for finite systems.
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Calorimetric experiments on nuclear matter �1� as well as
on sodium �NaCl� clusters �2� have highlighted the need for
understanding the thermodynamics of finite-sized systems. In
a microcanonical description �3–6� the fundamental quantity
is the density of states g�E� and the microcanonical entropy
S�E�=kB ln g�E� defines the temperature curve T�E�
= ��S�E� /�E�−1. Note that in mixed phase systems exist re-
gions where the microcanonical temperature T�E� decreases
with increasing E. The resulting negative values for the ca-
loric specific heat CV�E�=1/V�E /�T�E� at constant volume
V are observed in experiments, too �1�. Currently there is no
mature theory that would explain these data.

Exploring such phenomena on a computer is extremely
difficult. Large free energy barriers correspond to less prob-
able and therefore seldom sampled configurations. The prob-
lem was addressed in statistical physics through multicana-
nonical ensemble simulations �7� and later Wang-Landau
sampling �8,9�. However, application of these methods is not
always straightforward. Parallel tempering �10� is much sim-
pler to implement but fails in systems with strong first-order
phase transitions. Here, we present multiple Gaussian modi-
fied ensemble �MGME� sampling �11� to combine the ease of
use of parallel tempering with the possibility of simulating
first-order phase transitions. Our test cases are two-
dimensional �2D� Potts models �12� on V=L2 boxes with
Q=20 and Q=256. Their partition function is given by a sum
over all configurations

Z = �
conf .

exp�+ ��
nn

�qi,qj� �1�

with energies E ranging on the interval −2V , . . . ,0 and with
�=1/T. As these models exhibit very strong first-order tran-
sitions they should lead for finite systems to the predicted
negative values of the caloric specific heat. MGME uses
ideas from the Gaussian ensembles approach �13,14�. Here,
the Boltzmann weight is modified at the transition point �T
by a Gaussian in the energy that relies on two parameters E0
and �E0:

pB��T,E� = e−�TE−��E − E0�/�E0�2
. �2�

The bimodal probability distribution function P�E� of the
energy can be turned into a unimodal distribution, provided
that the value of the Gaussian width parameter �E0 is
“small.” In MGME simulations the partition function is writ-
ten as a product,

Z = �
i=1

Nrep

Zi. �3�

The weights Wi�E� in the Nrep multiplicative terms Zi

=�Eg�E�exp�−Wi�E�� are chosen such that for normalized
functions P�E�,

�
E

min�Pi�E�,Pi+1�E�� � 0.63. �4�

This overlap criterion is taken between all neighboring fac-
tors i and i+1 ensuring a broad sampling of all energies.

The various partition functions Zi are distributed on the
nodes of a parallel computer. Utilizing local spin updates, as
well as parallel tempering swaps �10� between neighboring
partition functions Zi and Zi+1, one records the multihisto-
gram HMH�E� �15,16� of energy E occurring in Z. This al-
lows one to obtain a stochastic estimate of g�E� by way of
reweighting:

ln g�E� = const + ln	HMH�E�
 − ln��
i=1

Nrep

e−Wi�E�−Fi� . �5�

The peculiar choice of the constant 0.63 in Eq. �4� yields
swap acceptance rates Pacc
0.5 for unimodular P�E� func-
tions. The Nrep+1 free constants Fi, and the value “const”
are determined self-consistently.

We factorize the partition function Z of Eq. �3� into three
factors Z=Zlow−T, ZMGME, and Zhigh−T. The factors Z=Zlow−T
and Zhigh−T ensure broad sampling in low and high tempera-
ture phases. ZMGME covers the mixed phase at �T for
energies eoV�E�edV. For Q=20, we have the energy
density values ed=−0.626 529 17 and eo=−1.820 684 43,
while �T=ln�1+�Q�. We write

Zhigh−T = �
i=1

N1

�
conf .

e−�iE��e −
eo + ed

2
� , �6�
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ZMGME = �
i=N1+1

N2

�
conf .

e−�TE−��E − E0
i �/�E0�2

, �7�

Zlow−T = �
i=N2+1

Nrep

�
conf .

e−�iE�� eo + ed

2
− e� , �8�

where ��z� is the Heaviside step function. The parameters �i

for i=1, . . . ,N1 and i=N2+1 , . . . ,Nrep, as well as the E0
i for

i=N1+1 , . . . ,N2, are subject to the “boundary conditions”

�1 = 0, �N1
= �N2+1 = �T, �Nrep

= �max, �9�

E0
N1+1 = edV, E0

N2 = eoV . �10�

The �max is chosen such that the overlap with ground state
probability distributions

�
E

min�P��max,E�,P�� → � ,E�� � 0.5 �11�

is not small. On 2D square boxes with linear extent L we
select Gaussian width parameter �E0 with �E0=C�E0

L.
In the following, we implement MGME simulations for

the 2D Potts models at Q=20 and Q=256 on square boxes
with periodic boundary conditions. We compare exact find-
ings �17� to high precision Monte Carlo simulations of Eq.
�3�. In particular, we use the planar interface tension 	0 be-
tween disordered and ordered phases at �T �18�. For these
models one has the values 2	0=0.370 72 and 2	0
=1.903 38. This interface tension leads to the asymptotic re-
sidual supercritical slowing

lim
L→�

ln�
erg�
L

= 0.1346 � 2	0, �12�

from the free energy difference of lens shaped versus circular
droplets at the droplet-strip shape transition �19�. Finally, we
note that the Q-state Potts models exhibits a trivial ground
state degeneracy of nGS=g�E=−2V�=Q on boxes with peri-
odic boundaries.

None of the Pi�E� for single Zi in Eq. �3� should depart
from a unimodal shape as the existence of several “peaks”
leads to metastability. Therefore, the value of the Gaussian
width parameter �E0 within ZMGME of Eq. �7� cannot be too
large. For the same reason, the Heaviside step functions of
Eq. �6� and Eq. �8� turn all probabilities within Zhigh−T and
Zlow−T into unimodal distributions in energy. The Gaussian’s
width parameter C�E0

was chosen as C�E0
=2 for the Q=20

case, and C�E0
=1 for Q=256. Thus any simulation within a

Zi is far away from one of a microcanonical ensemble. At the
same time, �E0 values are small enough to inhibit multimo-
dal P�E� functions. The total number of replica scales as
Nrep�L�=const L, where we find const
2.2 at Q=20 and
const
3.4 at Q=256. Apparently the quantity Nrep�L� for
2D Potts models with first-order phase transitions behaves as
in critical systems. Using Beale’s exact density of states �20�
we find Nrep�L�
1.3L for Pacc
0.5 parallel tempering
simulations in the 2D Ising model. We also expect that
�E0�L and Nrep�L��Ld−1 is the proper choice for MGME

simulations of first-order phase transitions in d
2.
Once the Gaussian width is fixed, Z=Zlow−T, ZMGME, and

Zhigh−T turn into functions of one unknown parameter, either
�i or E0

i . We can simulate any of the Zi with standard Monte
Carlo and utilizing single histogram reweighting for the
overlap equation �4� we determine the parameter of Zi+1.
This iterative procedure determines the parameter partition
�i and E0

i in a robust way, and for the considered models it
only requires a marginal CPU amount in units of the total
cost.

Our main observable is the density of state g�E� which
can be estimated by multihistogram reweighting, see Eq. �5�.
Once g�E� is known, all other quantities as the specific heat
CV�E�= 1 �V �E /�T�E� and the ground state degeneracy
nGS=g�E=−2V� follow. The reweighting in Eq. �5� depends
on the ratios Fi /Fi+1 and an overall constant const that can
be eliminated by the normalization �Eg�E�=QV. We obtain
the ratios Fi /Fi+1 through a self-consistent iteration as de-
scribed in �15,16�, and secondly also via the method of
Bennett �21�,

Fi

Fi+1
= ln� �M�Wi�Ei+1� − Wi+1�Ei+1���i+1

�M�Wi+1�Ei� − Wi�Ei���i
� . �13�

Here, M�x� can be the Metropolis function M�x�
=min�exp�−x� ,1�, or the Fermi function M�x�
= �exp�x�+1�−1. We have checked for the 2D Ising model and
the Potts models that the two versions of Fi /Fi+1 yield sta-
tistically consistent results.

We simulate the partitions functions Zi of Eq. �3� employ-
ing local heat bath steps �22�. The total Monte Carlo statis-
tics is 0.5�109V local spin updates for given box sizes
L�64 at volume V=L2. With one sweep consisting of V
local Monte Carlo steps, this implies a statistics of
0.5�109/Nrep Monte Carlo sweeps on each Zi correspond-
ing to a total statistics of order one to 107 sweeps. Parallel
tempering swaps between spin configurations of Zi and Zi+1
are performed one swap per sweep. Error bars are calculated
with jackknife binning using 10 bins, and we use the gener-
alized feedback shift register random number generator
R1279.

FIG. 1. Ergodicity autocorrelation times 
erg in units of sweeps
for Q=256 �circles� and Q=20 �triangles� as a function of L. The
straight lines have slopes as given in Eq. �12�
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One important measure of computational efficiency in
broad histogram sampling methods is the ergodicity time
scale 
erg for the completion—in the mean—of one single
“tunneling event” from the low to high—or high to
low—temperature regions, see also Ref. �24,25�. We display
in Fig. 1 our final 
erg results in units of sweeps in a loga-
rithmic scale for the Q=20 and Q=256 Potts models. We
only select runs that are longer than ten times 
erg. The figure
contains straight lines that correspond to residual supercriti-
cal slowing down with slopes as given through Eq. �12�. The
data collapse of 
erg onto the prediction indicates the absence
of supercritical slowing down, i.e., there are likely no time
scales diverging as e2�	0�L.

We have determined the density of states, and in Fig. 2 we
display the probability distribution function Pcan�E�
=ln g�E�−�TE for the Q=256 case. The number of ground
states nGS=g�E=−2V� is determined from a fit to all data.
We find nGS=19.998�19� �Q=20� and nGS=255.94�33�
�Q=256�. In the Q=20 Potts model, see Table I, we compare
finite-size measurements of pseudocritical couplings �CV, re-
lated to the specific heat maximum, with earlier findings
from multicanonical simulations �23�. The measurements
agree within statistical error bars. These results and previous
findings provide a high-precision test of our simulations and
analysis methods. Table I also contains a datum on the frac-
tion of the Monte Carlo statistics �third row� that was spent
in mixed phase simulations. The statistical error bars within
both studies are of comparable size, if they are scaled to
equal numbers of sweeps. Thus MGME, multicanonical, and

Wang-Landau simulation methods have comparable effi-
ciency in computing �CV as well as g�E�.

Finally, we display in Fig. 3 the caloric specific heat CV�e�
for the Q=256 Potts model. As predicted earlier, this quan-
tity can become negative. At least qualitatively, our plots
look similar to the data in �1�, which however correspond to
a 3D experimental setting. As indicated by the vertical lines
at e* in the figure, we find a position of the singularity
�e=ed−e*, which with increasing L decreases as L−d/�d+1� in
d=2. The quantity �eL

+d/�d+1� has the values 0.8260�4�,
0.8354�2�, and 0.8436�3� on lattices of size 502, 702, and 902.
It exhibits a mild finite-size dependence and is predicted to
become constant in the L→� limit. The CV�e� discontinui-
ties in Fig. 3 are consistent with the singular form

CV�e� =
const

L��e − e*�
�14�

with �
2.48. This implies that the width of the CV�e�
curves in Fig. 3 with increasing L decrease much faster than
their positions �e=ed−e*. Such a sharpening at phase coex-
istence of droplets and vapor for atomic systems is predicted
by Binder �26�. For other recent simulational data on the
condensation and/or evaporation phase transition in the Ising
model we refer to �27�.

In conclusion, we have developed MGME sampling as a
method for parallel tempering studies of first-order phase
transitions and of mixed phases in finite-sized thermody-
namic systems. It is particularly suited for the study of theo-
ries with a continuous energy function, as updates only re-
quire calculations of Gaussian’s in the energy E, see Eq. �7�.
In addition, MGME sampling can be implemented easily on
parallel computers. As the communication load is small,
simulations of hundreds to thousands of processors are pos-
sible with little overhead. We therefore recommend MGME
simulations as a tool for future studies in free energy land-
scapes of complex systems.

The calculations were done on the computers of the Neu-
mann Institute for Computing, Forschungszentrum Jülich,
Jülich, Germany. This work was supported in part by a re-
search grant �Grant No. CHE-0313618� of the National Sci-
ence Foundation �USA�. T.N. thanks Professor K. Binder for
useful discussions.

TABLE I. Finite-size pseudocritical couplings �CV as mentioned
in the text for Q=20 from current studies �MGME07� and from a
work of Berg et al. of the year 1993 �23�: �BB11972�.

L Origin Sweeps/106 �CV

16 BBN1993 104.4 1.036470�150�
16 MGME07 202.6 1.036366�103�
24 BBN1993 129.1 1.034820�100�
24 MGME07 203.6 1.034681�085�
32 BBN1993 40.5 1.033170�220�
32 MGME07 201.3 1.033031�055�

FIG. 2. Logarithmized energy distribution functions at �T for
L=8,9 , . . . ,43,44 at Q=256. Dashed curves belong to even values
of L, solid ones to odd values.

FIG. 3. Caloric specific heat CV�e� for the Q=256 Potts model
on 502 �circles�, 702 �tilted crosses�, and 902 lattices �squares� as a
function of e=E /V.
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